Tuesday, July 20, 2010

Personal Computer

A small, single-user computer based on a microprocessor. In addition to the microprocessor, a personal computer has a keyboard for entering data, a monitor for displaying information, and a storage device for saving data.

A small, relatively inexpensive computer designed for an individual user. In price, personal computers range anywhere from a few hundred dollars to thousands of dollars. All are based on the microprocessor technology that enables manufacturers to put an entire CPU on one chip. Businesses use personal computers for word processing, accounting, desktop publishing, and for running spreadsheet and database management applications. At home, the most popular use for personal computers is for playing games.
Personal computers first appeared in the late 1970s. One of the first and most popular personal computers was the Apple II, introduced in 1977 by Apple Computer. During the late 1970s and early 1980s, new models and competing operating systems seemed to appear daily. Then, in 1981, IBM entered the fray with its first personal computer, known as the IBM PC. The IBM PC quickly became the personal computer of choice, and most other personal computer manufacturers fell by the wayside. One of the few companies to survive IBM's onslaught was Apple Computer, which remains a major player in the personal computer marketplace.

Other companies adjusted to IBM's dominance by building IBM clones, computers that were internally almost the same as the IBM PC, but that cost less. Because IBM clones used the same microprocessors as IBM PCs, they were capable of running the same software. Over the years, IBM has lost much of its influence in directing the evolution of PCs. Many of its innovations, such as the MCA expansion bus and the OS/2 operating system, have not been accepted by the industry or the marketplace.

Today, the world of personal computers is basically divided between Apple Macintoshes and PCs. The principal characteristics of personal computers are that they are single-user systems and are based on microprocessors. However, although personal computers are designed as single-user systems, it is common to link them together to form a network. In terms of power, there is great variety. At the high end, the distinction between personal computers and workstations has faded. High-end models of the Macintosh and PC offer the same computing power and graphics capability as low-end workstations by Sun Microsystems, Hewlett-Packard, and DEC.

Kinds Of Computers

Computers can be generally classified by size and power as follows,

1.

Personal Computer
2.

Workstation
3.

Minicomputer
4.

Mainframe
5.

Supercomputer

Sixth Generation (1990 - )

Transitions between generations in computer technology are hard to define, especially as they are taking place. Some changes, such as the switch from vacuum tubes to transistors, are immediately apparent as fundamental changes, but others are clear only in retrospect. Many of the developments in computer systems since 1990 reflect gradual improvements over established systems, and thus it is hard to claim they represent a transition to a new ``generation'', but other developments will prove to be significant changes.

Fifth Generation (1984-1990)

The development of the next generation of computer systems is characterized mainly by the acceptance of parallel processing. Until this time parallelism was limited to pipelining and vector processing, or at most to a few processors sharing jobs. The fifth generation saw the introduction of machines with hundreds of processors that could all be working on different parts of a single program. The scale of integration in semiconductors continued at an incredible pace - by 1990 it was possible to build chips with a million components - and semiconductor memories became standard on all computers.

Other new developments were the widespread use of computer networks and the increasing use of single-user workstations. Prior to 1985 large scale parallel processing was viewed as a research goal, but two systems introduced around this time are typical of the first commercial products to be based on parallel processing. The Sequent Balance 8000 connected up to 20 processors to a single shared memory module (but each processor had its own local cache). The machine was designed to compete with the DEC VAX-780 as a general purpose Unix system, with each processor working on a different user's job. However Sequent provided a library of subroutines that would allow programmers to write programs that would use more than one processor, and the machine was widely used to explore parallel algorithms and programming techniques.

The Intel iPSC-1, nicknamed ``the hypercube'', took a different approach. Instead of using one memory module, Intel connected each processor to its own memory and used a network interface to connect processors. This distributed memory architecture meant memory was no longer a bottleneck and large systems (using more processors) could be built. The largest iPSC-1 had 128 processors. Toward the end of this period a third type of parallel processor was introduced to the market. In this style of machine, known as a data-parallel or SIMD, there are several thousand very simple processors. All processors work under the direction of a single control unit; i.e. if the control unit says ``add a to b'' then all processors find their local copy of a and add it to their local copy of b. Machines in this class include the Connection Machine from Thinking Machines, Inc., and the MP-1 from MasPar, Inc.

Scientific computing in this period was still dominated by vector processing. Most manufacturers of vector processors introduced parallel models, but there were very few (two to eight) processors in this parallel machines. In the area of computer networking, both wide area network (WAN) and local area network (LAN) technology developed at a rapid pace, stimulating a transition from the traditional mainframe computing environment toward a distributed computing environment in which each user has their own workstation for relatively simple tasks (editing and compiling programs, reading mail) but sharing large, expensive resources such as file servers and supercomputers. RISC technology (a style of internal organization of the CPU) and plummeting costs for RAM brought tremendous gains in computational power of relatively low cost workstations and servers. This period also saw a marked increase in both the quality and quantity of scientific visualization.

Fourth Generation (1972-1984)

The next generation of computer systems saw the use of large scale integration (LSI - 1000 devices per chip) and very large scale integration (VLSI - 100,000 devices per chip) in the construction of computing elements. At this scale entire processors will fit onto a single chip, and for simple systems the entire computer (processor, main memory, and I/O controllers) can fit on one chip. Gate delays dropped to about 1ns per gate.

Semiconductor memories replaced core memories as the main memory in most systems; until this time the use of semiconductor memory in most systems was limited to registers and cache. During this period, high speed vector processors, such as the CRAY 1, CRAY X-MP and CYBER 205 dominated the high performance computing scene. Computers with large main memory, such as the CRAY 2, began to emerge. A variety of parallel architectures began to appear; however, during this period the parallel computing efforts were of a mostly experimental nature and most computational science was carried out on vector processors. Microcomputers and workstations were introduced and saw wide use as alternatives to time-shared mainframe computers.

Developments in software include very high level languages such as FP (functional programming) and Prolog (programming in logic). These languages tend to use a declarative programming style as opposed to the imperative style of Pascal, C, FORTRAN, et al. In a declarative style, a programmer gives a mathematical specification of what should be computed, leaving many details of how it should be computed to the compiler and/or runtime system. These languages are not yet in wide use, but are very promising as notations for programs that will run on massively parallel computers (systems with over 1,000 processors). Compilers for established languages started to use sophisticated optimization techniques to improve code, and compilers for vector processors were able to victories simple loops (turn loops into single instructions that would initiate an operation over an entire vector).

Two important events marked the early part of the third generation: the development of the C programming language and the UNIX operating system, both at Bell Labs. In 1972, Dennis Ritchie, seeking to meet the design goals of CPL and generalize Thompson's B, developed the C language. Thompson and Ritchie then used C to write a version of UNIX for the DEC PDP-11. This C-based UNIX was soon ported to many different computers, relieving users from having to learn a new operating system each time they change computer hardware. UNIX or a derivative of UNIX is now a de facto standard on virtually every computer system.

An important event in the development of computational science was the publication of the Lax report. In 1982, the US Department of Defense (DOD) and National Science Foundation (NSF) sponsored a panel on Large Scale Computing in Science and Engineering, chaired by Peter D. Lax. The Lax Report stated that aggressive and focused foreign initiatives in high performance computing, especially in Japan, were in sharp contrast to the absence of coordinated national attention in the United States. The report noted that university researchers had inadequate access to high performance computers. One of the first and most visible of the responses to the Lax report was the establishment of the NSF supercomputing centers. Phase I on this NSF program was designed to encourage the use of high performance computing at American universities by making cycles and training on three (and later six) existing supercomputers immediately available. Following this Phase I stage, in 1984-1985 NSF provided funding for the establishment of five Phase II supercomputing centers.

The Phase II centers, located in San Diego (San Diego Supercomputing Center); Illinois (National Center for Supercomputing Applications); Pittsburgh (Pittsburgh Supercomputing Center); Cornell (Cornell Theory Center); and Princeton (John von Neumann Center), have been extremely successful at providing computing time on supercomputers to the academic community. In addition they have provided many valuable training programs and have developed several software packages that are available free of charge. These Phase II centers continue to augment the substantial high performance computing efforts at the National Laboratories, especially the Department of Energy (DOE) and NASA sites.

Third Generation (1963-1972)

The third generation brought huge gains in computational power. Innovations in this era include the use of integrated circuits, or ICs (semiconductor devices with several transistors built into one physical component), semiconductor memories starting to be used instead of magnetic cores, microprogramming as a technique for efficiently designing complex processors, the coming of age of pipelining and other forms of parallel processing (described in detail in Chapter CA), and the introduction of operating systems and time-sharing.

The first ICs were based on small-scale integration (SSI) circuits, which had around 10 devices per circuit (or ``chip''), and evolved to the use of medium-scale integrated (MSI) circuits, which had up to 100 devices per chip. Multilayered printed circuits were developed and core memory was replaced by faster, solid state memories. Computer designers began to take advantage of parallelism by using multiple functional units, overlapping CPU and I/O operations, and pipelining (internal parallelism) in both the instruction stream and the data stream. In 1964, Seymour Cray developed the CDC 6600, which was the first architecture to use functional parallelism. By using 10 separate functional units that could operate simultaneously and 32 independent memory banks, the CDC 6600 was able to attain a computation rate of 1 million floating point operations per second (1 Mflops). Five years later CDC released the 7600, also developed by Seymour Cray. The CDC 7600, with its pipelined functional units, is considered to be the first vector processor and was capable of executing at 10 Mflops. The IBM 360/91, released during the same period, was roughly twice as fast as the CDC 660. It employed instruction look ahead, separate floating point and integer functional units and pipelined instruction stream. The IBM 360-195 was comparable to the CDC 7600, deriving much of its performance from a very fast cache memory. The SOLOMON computer, developed by Westinghouse Corporation, and the ILLIAC IV, jointly developed by Burroughs, the Department of Defense and the University of Illinois, were representative of the first parallel computers. The Texas Instrument Advanced Scientific Computer (TI-ASC) and the STAR-100 of CDC were pipelined vector processors that demonstrated the viability of that design and set the standards for subsequent vector processors.

Early in the this third generation Cambridge and the University of London cooperated in the development of CPL (Combined Programming Language, 1963). CPL was, according to its authors, an attempt to capture only the important features of the complicated and sophisticated ALGOL. However, like ALGOL, CPL was large with many features that were hard to learn. In an attempt at further simplification, Martin Richards of Cambridge developed a subset of CPL called BCPL (Basic Computer Programming Language, 1967). In 1970 Ken Thompson of Bell Labs developed yet another simplification of CPL called simply B, in connection with an early implementation of the UNIX operating system. comment):

Second Generation (1954-1962)

The second generation saw several important developments at all levels of computer system design, from the technology used to build the basic circuits to the programming languages used to write scientific applications.

Electronic switches in this era were based on discrete diode and transistor technology with a switching time of approximately 0.3 microseconds. The first machines to be built with this technology include TRADIC at Bell Laboratories in 1954 and TX-0 at MIT's Lincoln Laboratory. Memory technology was based on magnetic cores which could be accessed in random order, as opposed to mercury delay lines, in which data was stored as an acoustic wave that passed sequentially through the medium and could be accessed only when the data moved by the I/O interface.
Important innovations in computer architecture included index registers for controlling loops and floating point units for calculations based on real numbers. Prior to this accessing successive elements in an array was quite tedious and often involved writing self-modifying code (programs which modified themselves as they ran; at the time viewed as a powerful application of the principle that programs and data were fundamentally the same, this practice is now frowned upon as extremely hard to debug and is impossible in most high level languages). Floating point operations were performed by libraries of software routines in early computers, but were done in hardware in second generation machines.

During this second generation many high level programming languages were introduced, including FORTRAN (1956), ALGOL (1958), and COBOL (1959). Important commercial machines of this era include the IBM 704 and its successors, the 709 and 7094. The latter introduced I/O processors for better throughput between I/O devices and main memory.
The second generation also saw the first two supercomputers designed specifically for numeric processing in scientific applications. The term ``supercomputer'' is generally reserved for a machine that is an order of magnitude more powerful than other machines of its era. Two machines of the 1950s deserve this title. The Livermore Atomic Research Computer (LARC) and the IBM 7030 (aka Stretch) were early examples of machines that overlapped memory operations with processor operations and had primitive forms of parallel processing.