The idea of using machines to solve mathematical problems can be traced at least as far as the early 17th century. Mathematicians who designed and implemented calculators that were capable of addition, subtraction, multiplication, and division included Wilhelm Schick hard, Blaise Pascal, and Gottfried Leibnitz.
The first multi-purpose, i.e. programmable, computing device was probably Charles Babbage's Difference Engine, which was begun in 1823 but never completed. A more ambitious machine was the Analytical Engine. It was designed in 1842, but unfortunately it also was only partially completed by Babbage. Babbage was truly a man ahead of his time: many historians think the major reason he was unable to complete these projects was the fact that the technology of the day was not reliable enough. In spite of never building a complete working machine, Babbage and his colleagues, most notably Ada, Countess of Lovelace, recognized several important programming techniques, including conditional branches, iterative loops and index variables.
A machine inspired by Babbage's design was arguably the first to be used in computational science. George Scheutz read of the difference engine in 1833, and along with his son Edvard Scheutz began work on a smaller version. By 1853 they had constructed a machine that could process 15-digit numbers and calculate fourth-order differences. Their machine won a gold medal at the Exhibition of Paris in 1855, and later they sold it to the Dudley Observatory in Albany, New York, which used it to calculate the orbit of Mars. One of the first commercial uses of mechanical computers was by the US Census Bureau, which used punch-card equipment designed by Herman Hollerith to tabulate data for the 1890 census. In 1911 Hollerith's company merged with a competitor to found the corporation which in 1924 became International Business Machines.
computer science is the study of the operating principles of computer, computer programming languages and algorithms for solving theoretical as well as practical problems.It involves the develoment and use of device for processing information.it also deals with advantages and dis advantages and of computer, its features, applications fleld and its impact on the society.
Tuesday, July 20, 2010
History of Computer Technology
A complete history of computing would include a multitude of diverse devices such as the ancient Chinese abacus, the Jacquard loom (1805) and Charles Babbage's ``analytical engine'' (1834). It would also include discussion of mechanical, analog and digital computing architectures. As late as the 1960s, mechanical devices, such as the Merchant calculator, still found widespread application in science and engineering. During the early days of electronic computing devices, there was much discussion about the relative merits of analog vs. digital computers. In fact, as late as the 1960s, analog computers were routinely used to solve systems of finite difference equations arising in oil reservoir modeling. In the end, digital computing devices proved to have the power, economics and scalability necessary to deal with large scale computations. Digital computers now dominate the computing world in all areas ranging from the hand calculator to the supercomputer and are pervasive throughout society. Therefore, this brief sketch of the development of scientific computing is limited to the area of digital, electronic computers.
The evolution of digital computing is often divided into generations. Each generation is characterized by dramatic improvements over the previous generation in the technology used to build computers, the internal organization of computer systems, and programming languages. Although not usually associated with computer generations, there has been a steady improvement in algorithms, including algorithms used in computational science. The following history has been organized using these widely recognized generations as mileposts.
*
The Mechanical Era (1623-1945)
*
First Generation Electronic Computers (1937-1953)
*
Second Generation (1954-1962)
*
Third Generation (1963-1972)
*
Fourth Generation (1972-1984)
*
Fifth Generation (1984-1990)
*
Sixth Generation (1990 - )
The evolution of digital computing is often divided into generations. Each generation is characterized by dramatic improvements over the previous generation in the technology used to build computers, the internal organization of computer systems, and programming languages. Although not usually associated with computer generations, there has been a steady improvement in algorithms, including algorithms used in computational science. The following history has been organized using these widely recognized generations as mileposts.
*
The Mechanical Era (1623-1945)
*
First Generation Electronic Computers (1937-1953)
*
Second Generation (1954-1962)
*
Third Generation (1963-1972)
*
Fourth Generation (1972-1984)
*
Fifth Generation (1984-1990)
*
Sixth Generation (1990 - )
Supercomputer
An extremely fast computer that can perform hundreds of millions of instructions per second. The fastest type of computer. Supercomputers are very expensive and are employed for specialized applications that require immense amounts of mathematical calculations. For example, weather forecasting requires a supercomputer. Other uses of supercomputers include animated graphics, fluid dynamic calculations, nuclear energy research, and petroleum exploration.
The chief difference between a supercomputer and a mainframe is that a supercomputer channels all its power into executing a few programs as fast as possible, whereas a mainframe uses its power to execute many programs concurrently
The chief difference between a supercomputer and a mainframe is that a supercomputer channels all its power into executing a few programs as fast as possible, whereas a mainframe uses its power to execute many programs concurrently
Minicomputer
A multi-user computer capable of supporting from 10 to hundreds of users simultaneously. A midsized computer. In size and power, minicomputers lie between workstations and mainframes. In the past decade, the distinction between large minicomputers and small mainframes has blurred, however, as has the distinction between small minicomputers and workstations. But in general, a minicomputer is a multiprocessing system capable of supporting from 4 to about 200 users simultaneously.
Personal Computer
A small, single-user computer based on a microprocessor. In addition to the microprocessor, a personal computer has a keyboard for entering data, a monitor for displaying information, and a storage device for saving data.
A small, relatively inexpensive computer designed for an individual user. In price, personal computers range anywhere from a few hundred dollars to thousands of dollars. All are based on the microprocessor technology that enables manufacturers to put an entire CPU on one chip. Businesses use personal computers for word processing, accounting, desktop publishing, and for running spreadsheet and database management applications. At home, the most popular use for personal computers is for playing games.
Personal computers first appeared in the late 1970s. One of the first and most popular personal computers was the Apple II, introduced in 1977 by Apple Computer. During the late 1970s and early 1980s, new models and competing operating systems seemed to appear daily. Then, in 1981, IBM entered the fray with its first personal computer, known as the IBM PC. The IBM PC quickly became the personal computer of choice, and most other personal computer manufacturers fell by the wayside. One of the few companies to survive IBM's onslaught was Apple Computer, which remains a major player in the personal computer marketplace.
Other companies adjusted to IBM's dominance by building IBM clones, computers that were internally almost the same as the IBM PC, but that cost less. Because IBM clones used the same microprocessors as IBM PCs, they were capable of running the same software. Over the years, IBM has lost much of its influence in directing the evolution of PCs. Many of its innovations, such as the MCA expansion bus and the OS/2 operating system, have not been accepted by the industry or the marketplace.
Today, the world of personal computers is basically divided between Apple Macintoshes and PCs. The principal characteristics of personal computers are that they are single-user systems and are based on microprocessors. However, although personal computers are designed as single-user systems, it is common to link them together to form a network. In terms of power, there is great variety. At the high end, the distinction between personal computers and workstations has faded. High-end models of the Macintosh and PC offer the same computing power and graphics capability as low-end workstations by Sun Microsystems, Hewlett-Packard, and DEC.
A small, relatively inexpensive computer designed for an individual user. In price, personal computers range anywhere from a few hundred dollars to thousands of dollars. All are based on the microprocessor technology that enables manufacturers to put an entire CPU on one chip. Businesses use personal computers for word processing, accounting, desktop publishing, and for running spreadsheet and database management applications. At home, the most popular use for personal computers is for playing games.
Personal computers first appeared in the late 1970s. One of the first and most popular personal computers was the Apple II, introduced in 1977 by Apple Computer. During the late 1970s and early 1980s, new models and competing operating systems seemed to appear daily. Then, in 1981, IBM entered the fray with its first personal computer, known as the IBM PC. The IBM PC quickly became the personal computer of choice, and most other personal computer manufacturers fell by the wayside. One of the few companies to survive IBM's onslaught was Apple Computer, which remains a major player in the personal computer marketplace.
Other companies adjusted to IBM's dominance by building IBM clones, computers that were internally almost the same as the IBM PC, but that cost less. Because IBM clones used the same microprocessors as IBM PCs, they were capable of running the same software. Over the years, IBM has lost much of its influence in directing the evolution of PCs. Many of its innovations, such as the MCA expansion bus and the OS/2 operating system, have not been accepted by the industry or the marketplace.
Today, the world of personal computers is basically divided between Apple Macintoshes and PCs. The principal characteristics of personal computers are that they are single-user systems and are based on microprocessors. However, although personal computers are designed as single-user systems, it is common to link them together to form a network. In terms of power, there is great variety. At the high end, the distinction between personal computers and workstations has faded. High-end models of the Macintosh and PC offer the same computing power and graphics capability as low-end workstations by Sun Microsystems, Hewlett-Packard, and DEC.
Fifth generation computer - Definition
The Fifth-Generation Computer was to be the end result of a massive government/industry research project in Japan during the 1980s. It aimed to create an "epoch-making computer" with supercomputer-like performance and usable artificial intelligence capabilities.
The term "fifth generation" was intended to convey the system as being a leap beyond existing machines. Computers using vacuum tubes were called the first generation, transistors and diodes the second, ICs the third, and those using microprocessors the fourth. Whereas previous computer generations had focused on increasing the number of logic elements in a single CPU, the fifth generation, it was widely believed at the time, would instead turn to massive numbers of CPUs for added performance.
Throughout these multiple generations since the 1950s, Japan had largely been a follower in terms of computing advancement, building computers following US and British leads. The Ministry for International Trade and Industry (MITI) decided to attempt to break out of this follow-the-leader pattern, and in the mid-1970s started looking, on a small scale, into the future of computing. They asked the Japan Information Processing Development Center (JIPDEC) to indicate a number of future directions, and in 1979 offered a three-year contract to carry out more in-depth studies along with industry and academia. It was during this period that the term "fifth-generation computer" started to be used.
The term "fifth generation" was intended to convey the system as being a leap beyond existing machines. Computers using vacuum tubes were called the first generation, transistors and diodes the second, ICs the third, and those using microprocessors the fourth. Whereas previous computer generations had focused on increasing the number of logic elements in a single CPU, the fifth generation, it was widely believed at the time, would instead turn to massive numbers of CPUs for added performance.
Throughout these multiple generations since the 1950s, Japan had largely been a follower in terms of computing advancement, building computers following US and British leads. The Ministry for International Trade and Industry (MITI) decided to attempt to break out of this follow-the-leader pattern, and in the mid-1970s started looking, on a small scale, into the future of computing. They asked the Japan Information Processing Development Center (JIPDEC) to indicate a number of future directions, and in 1979 offered a three-year contract to carry out more in-depth studies along with industry and academia. It was during this period that the term "fifth-generation computer" started to be used.
Fourth Generation Computers
After the invention of the integrated circuit, the next step in the computer design process was to reduce the overall size. Large scale integration (LSI) could fit hundreds of components onto one chip. By the 1980's, very large scale integration (VLSI) squeezed hundreds of thousands of components onto a chip. Ultra-large scale integration (ULSI) increased that number into the millions. The ability to fit so much onto an area about half the size of a U.S. dime helped diminish the size and price of computers. It also increased their power, efficiency and reliability. The Intel 4004 chip, developed in 1971, took the integrated circuit one step further by locating all the components of a computer (central processing unit, memory, and input and output controls) on a minute chip. Whereas previously the integrated circuit had had to be manufactured to fit a special purpose, now one microprocessor could be manufactured and then programmed to meet any number of demands. Soon everyday household items such as microwave ovens, television sets, and automobiles with electronic fuel injection incorporated microprocessors (Gersting 35 - 39).
Such condensed power allowed everyday people to harness a computer's power. They were no longer developed exclusively for large business or government contracts. By the mid-1970's, computer manufacturers sought to bring computers to general consumers. These minicomputers came complete with user-friendly software packages that offered even non-technical users an array of applications, most popularly word processing and spreadsheet programs. Pioneers in this field were Commodore, Radio Shack and Apple Computers. In the early 1980's, arcade video games such as Pac Man and home video game systems such as the Atari 2600 ignited consumer interest for more sophisticated, programmable home computers.
In 1981, IBM introduced its personal computer (PC) for use in the home, office and schools. The 1980's saw an expansion in computer use in all three arenas as clones of the IBM PC made the personal computer even more affordable. The number of personal computers in use more than doubled from 2 million in 1981 to 5.5 million in 1982. Ten years later, 65 million PCs were being used. Computers continued their trend toward a smaller size, working their way down from desktop to laptop computers to palmtop. In direct competition with IBM's PC was Apple's Macintosh line, introduced in 1984. Notable for its user-friendly design, the Macintosh offered an operating system that allowed users to move screen icons instead of typing instructions. Users controlled the screen cursor using a mouse, a device that mimicked the movement of one's hand on the computer screen.
As computers became more widespread in the workplace, new ways to harness their potential developed. As smaller computers became more powerful, they could be linked together, or networked, to share memory space, software, information and communicate with each other. As opposed to a mainframe computer, which was one powerful computer that shared time with many terminals for many applications, networked computers allowed individual computers to form electronic gateways. Using either direct wiring, called a Local Area Network (LAN), or telephone lines, these networks could reach enormous proportions. A global web of computer circuitry, the Internet, for example, links computers worldwide into a single network of information. During the 1992 U.S. presidential election, vice-presidential candidate Al Gore promised to make the development of this so-called "information superhighway" an administrative priority. The ideals expressed by Gore and others are in usage everyday through email, web browsing, and e-commerce. A new generation of computers will emerge with the use wireless communications and wide area networking.
Such condensed power allowed everyday people to harness a computer's power. They were no longer developed exclusively for large business or government contracts. By the mid-1970's, computer manufacturers sought to bring computers to general consumers. These minicomputers came complete with user-friendly software packages that offered even non-technical users an array of applications, most popularly word processing and spreadsheet programs. Pioneers in this field were Commodore, Radio Shack and Apple Computers. In the early 1980's, arcade video games such as Pac Man and home video game systems such as the Atari 2600 ignited consumer interest for more sophisticated, programmable home computers.
In 1981, IBM introduced its personal computer (PC) for use in the home, office and schools. The 1980's saw an expansion in computer use in all three arenas as clones of the IBM PC made the personal computer even more affordable. The number of personal computers in use more than doubled from 2 million in 1981 to 5.5 million in 1982. Ten years later, 65 million PCs were being used. Computers continued their trend toward a smaller size, working their way down from desktop to laptop computers to palmtop. In direct competition with IBM's PC was Apple's Macintosh line, introduced in 1984. Notable for its user-friendly design, the Macintosh offered an operating system that allowed users to move screen icons instead of typing instructions. Users controlled the screen cursor using a mouse, a device that mimicked the movement of one's hand on the computer screen.
As computers became more widespread in the workplace, new ways to harness their potential developed. As smaller computers became more powerful, they could be linked together, or networked, to share memory space, software, information and communicate with each other. As opposed to a mainframe computer, which was one powerful computer that shared time with many terminals for many applications, networked computers allowed individual computers to form electronic gateways. Using either direct wiring, called a Local Area Network (LAN), or telephone lines, these networks could reach enormous proportions. A global web of computer circuitry, the Internet, for example, links computers worldwide into a single network of information. During the 1992 U.S. presidential election, vice-presidential candidate Al Gore promised to make the development of this so-called "information superhighway" an administrative priority. The ideals expressed by Gore and others are in usage everyday through email, web browsing, and e-commerce. A new generation of computers will emerge with the use wireless communications and wide area networking.
Subscribe to:
Posts (Atom)